Tehama County Demand Management Concepts

Demand Management Working Group Meeting

Topics

- Introductions
- GSP implementation and background
- Demand management program concepts and examples
 - Napa Valley Subbasin
 - Madera Subbasin, Madera County GSA
 - Semitropic Water Storage District
 - Madera County Subbasins
 - Salinas Valley Subbasin
- Economic analysis and GSP implementation
- Discussion: demand management program concept

INTRODUCTIONS

Who are we?

ERA Economics Environment • Resources • Agriculture

Duncan MacEwan Brooks Ronspies

Jeff Davids Daniel Smith

What will we be assisting with?

- What is a demand management program?
- What are different options for a demand management program and what could work in Tehama County?
- How do we identify cost-effective approaches (evaluate economic impacts) for demand management and other projects?
- Outcome: contribution to a technical memorandum summarizing a demand management program <u>concepts</u> for Tehama County

GSP IMPLEMENTATION AND BACKGROUND

Why evaluate demand management?

- GSP approval and SGMA compliance
- GSP projects and management actions

Subbasin	GSP Overdraft* Estimate to be Addressed by Projects and Management Actions
Bowman	~
Red Bluff	(31,800) AFY (~25%)
Antelope	~
Los Molinos	(2,300) AFY (~10%)
Corning	(31,200) AFY (~20%)

*information from revised GSPs

Tehama County Subbasin PMAs Overview

PMA Type*	Bowman	Red Bluff	Antelope	Los Molinos	Corning
Data Improvement	Well registration	Well registration	Well registration	Well registration	Well registration
Recharge	Various recharge projects	6 sites targeted 535 AFY yield	Various recharge projects	Various recharge projects	12 sites targeted 1,749 AFY yield
In-Lieu Projects			Utilize SW supplies		CA Olive Ranch Utilize SW supplies
Education	Workshops and materials	Workshops and materials	Workshops and materials	Workshops and materials	Workshops and materials
Non-Beneficial ET		Invasive plant removal			Invasive plant removal
Demand Management	Best practices, conservation, incentive programs	Fees, land use restrictions, fallowing incentives	Best practices, conservation, incentive programs	Best practices, conservation, incentive programs	Fees, land use restrictions, fallowing incentives

*information from 2023 GSP Annual Reports

8

Demand Management Working Group Meeting February 18, 2025 **ERA** Econon

Environment • Resources • Agriculture

DEMAND MANAGEMENT PROGRAM PLANNING

Demand Management Approaches

Demand Management Program Framework

Program Development in Practice

• Some considerations

- What program components and actions are technically feasible?
- What are the costs of different actions (e.g., to a grower) and components (e.g., to the GSA)?
- What are the regional economic implications?
- Is the program the same for the entire county?
- When are program components implemented?
- How will (components of) the program be funded, who pays, and how much?
- How do we measure water savings?
- How to incentivize voluntary adoption / participation?
- Does an action save gross pumping or net use?
- Today: case studies of other areas as examples for discussion
 - Outcome: frame county demand management program

Demand Management Overview and Prior Meetings

Example Components / Actions

Land repurposing

Reduced pumping (incentives/voluntary)

Irrigation and production practices

Conservation (e.g., urban)

Rotational fallowing (incentives/voluntary)

Fallow bank (incentives/voluntary)

Alternative crops

Land retirement (incentives/voluntary)

Recycled water

Water fees / financial incentives

Education / water use data

Others

Flagged b	y Committee (Jan 2025 Meeting)
Allocations	
Pumping re	estrictions
Water fees	/ financial incentives
Fallowing p	orogram
Recharge	

CASE STUDY: NAPA VALLEY SUBBASIN

Groundwater Pumping Reduction (GPR) Program

Example Components / Actions

Land repurposing

Reduced pumping (incentives/voluntary)

Irrigation and production practices

Conservation (e.g., urban)

Rotational fallowing (incentives/voluntary)

Fallow bank (incentives/voluntary)

Alternative crops

Land retirement (incentives/voluntary)

Recycled water

Water fees / financial incentives

Education / water use data

Others

Background

- What triggered implementation?
 - GSP Advisory Committee approved pumping reduction starting with GSP adoption
 - 10% reduction applied to the Subbasin as a whole, not individual parcels
 - MT during recent drought

Program Overview

- Water Conservation Workplan
 - What actions can water users take to conserve water?
- Groundwater Pumping Reduction Workplan
 - What are program components, how are they implemented, and how is water savings measured?
- When were Workplans developed?
 2022 2023; adopted in 2024
- Implementation commenced in 2024 after Workplans were adopted

What Would Actions Cost?

- Actions analyzed
 - Water savings potential
 - Gross or net
 - Scalability
 - Historical investments
- Water conservation actions
 - All water users
 - Tailored to program implementation

	Estimated Annualized Cost	Estimated Potential Subbasin-wide	Adoption	Overall
Practice	per AF Conserved \$/AF	Water Savings AFY	Timeline* Years	Feasibility Ranking
Water Practices for All Users				
Water Metering	\$150 - \$2,500	350 - 550	Medium-Term	High
Recycled Water	\$362 - \$720	200 - 300	Medium-Term	High
Benchmarking	\$100 - \$350	300 - 1,100	Medium-Term	High
Water Practices for Vineyards (Est	ablished)			
Drip Irrigation	\$2,800 - \$9,200	75 - 250	Near-Term	Medium
Distribution Uniformity	\$175 - \$450	500 - 2,100	Near-Term	High
Plant Water and Soil Moisture Monitoring	\$155 - \$3,340	1,000 - 2,000	Near-Term	High
High Tech, Low Labor	\$350 - \$1,450			
Medium Tech, Medium Labor	\$740 - \$3,340			
Low Tech, High Labor	\$155 - \$1,170			
Cover Cropping	\$5,000 - \$18,000	50 - 550	Medium-Term	Low
Canopy Management	\$3,500 - \$5,000	200 - 300	Near-Term	Medium
Water Practices for Vineyards (New Plantings)				
Row Orientation	No additional cost	200 - 325	Long-Term	High
Rootstock Selection	No additional cost	Data Gaps	Long-Term	Data Gaps
Water Practices for Wineries				
Waterless Barrel Sanitation	\$1,900 - \$2,800	100 - 165	Near-Term	Low
Process Water Treatment and Reuse	Data Gaps	275 - 450	Long-Term	Medium
Water Practices for Residential, Commercial, and Hospitality				
WaterSense Devices	\$775 - \$1,200	500 - 575	Near-Term	High

How is the Program Implemented?

- Phased implementation
 - Concurrent components
 - Behavioral programs
- Other
 Considerations
 - Includes several behavioral programs
 - Options for incentives

Component 1: Education & Outreach

- Develop educational materials
- Build partnerships with local organizations
- Develop notification/messaging system

Component 2: Voluntary Adoption

- Develop incentive program for adoption of High-Priority Water Conservation Practices
- Pilot a benchmarking program
- Develop a voluntary meter data and reporting program

Component 3: Voluntary Certification

- Define minimum criteria (practices) for a certification program's members to receive a financial incentive
- Develop incentives for certification

Key Discussion Points

- Example of:
 - Voluntary program with different components
 - Careful cost analysis of actions
 - Evaluation of water savings (gross and net) potential
- Application across water users
 - M&I, rural, ag
- Phased implementation plan with mandatory options

CASE STUDY: MADERA COUNTY GSA

Voluntary Land Repurposing Program (VLRP)

Example Components / Actions

Land repurposing

Reduced pumping (incentives/voluntary)

Irrigation and production practices

Conservation (e.g., urban)

Rotational fallowing (incentives/voluntary)

Fallow bank (incentives/voluntary)

Alternative crops

Land retirement (incentives/voluntary)

Recycled water

Water fees / financial incentives

Education / water use data

Others -- Allocations

Background

- What triggered implementation?
 - Demand management is part of core GSP implementation for Madera County GSA (MCGSA)
 - This is one of several demand management programs

Figure 4-4. Madera County Demand Management Program

2020 Madera Subbasin Joint GSP. Chapter 4. PMAs

MCGSA Allocation

- Economic analysis for GSP
 - Glide path
 - Transitional Water
- Components
 - Transitional Water (TW)
 - Sustainable Yield
 - Surface Water Recharge
- Key rules
 - 2%/year increasing to 5%/year reduction in TW
 - Management within a Farm Unit
 - Penalties
 - Recharge accounting system

Program Overview

- What is the VLRP?
 - Temporary fallowing program
 - Operates as a fallow bank
- When was it developed?
 - Concept included in GSP
 - Development in 2020/2021
 - Adopted in 2022
- How was it funded?
 - SALC planning grant
 - Landowner funding (rates on hold)
 - Other potential grant funding

F ab	ole of Contents
Def	initions
G	SA Documents Referenced
Ν	1adera County SGMA Background
C	Verview of the Voluntary Land Repurposing Program
٧	/LRP Rules
	Owner and Land Eligibility
	VLRP Annual Solicitation Period and Application Process
	Selection Process
	Management Requirements
	Monitoring and Verification
	Payment Terms
	Termination
	Allocation of VLRP Water
	Modification Process
١T	TACHMENT A
١T	TACHMENT B14
٩T	FACHMENT C1
	ACHMENT C

Fallow Bank Concept

- Voluntary
- Enrollment approach
 - GSA accepts bids for payment and enrollment term
 - Ranked/selected using a reverse auction
 - Water saved available for lands that fund the program

Program acquires water (+ other benefits) from contracted lands GSP fees pay for the program incentive payments

What would the program cost?

- Depends on size of the fallow bank
 - Bid approach
 - What might the program pay? \$200 \$400 per AF
 - What would the program cost? \$25 \$95 per acre per year, for all acres
- Other Considerations
 - Landowner input for program rules and incentives

Some Discussion Points

- MCGSA allocation system
- Example of a voluntary fallowing bank
- Scalability and cost
- Tailoring to other funding opportunities

CASE STUDY: SEMITROPIC WATER STORAGE DISTRICT GSA

Landowner Water Budgets (Allocations)

Example Components / Actions

Land repurposing

Reduced pumping (incentives/voluntary)

Irrigation and production practices

Conservation (e.g., urban)

Rotational fallowing (incentives/voluntary)

Fallow bank (incentives/voluntary)

Alternative crops

Land retirement (incentives/voluntary)

Recycled water

Water fees / financial incentives

Education / water use data

Others -- Allocation

Background

- What triggered implementation?
 - Demand management is part of core GSP implementation
 - This is one of several demand management programs
 - SWSD overdraft ~136,000 AFY
 (about 40%)

SWSD PMAs	Quantity
Allocation	136,000 AF
Other Demand Management	~30,000 AF
Projects	~50,000 AF
Total	~225,000 AF

Allocation Overview

- What is the Landowner Water Budget?
 - SWP
 - Native yield
 - Supplemental purchases
 - Temporary consumptive use allowance (TCA)
- When was it developed?
 - Concept included in GSP
 - Development in 2020/2021
 - Adopted in 2022
- How does it work?
 - Penalties for over pumping
 - Flexibility within a landowner unit

Demand Reduction P/MA's Implemented After Adoption of GSP (2020)

SWSD-16 Landowner Water Budgets – An important aspect of managing the SWSD GSA's local groundwater resources is understanding the quantities of surface water and groundwater available to individual landowners in the SWSD GSA and how managing those resources over time will lead to sustainable groundwater management. The SWSD GSA adopted SWSD-16 – Landowner Water Budgets as the principal

Semitropic Water Storage District GSA Sustainable Groundwater Management Plan December 2024 BP-14-6

ERA Econo

Environment • Resources • Agriculture

Implementation

- Ramp-down period
 - TCA reduced by \sim 34,000 AF every 5 years
 - SWP and other supplies periodically updated
- Penalties
 - \$500 per AF plus \$1,000/day
- Tiered pricing (2025)
 - Tier 0: \$5 per AF of TCA
 - Tier 1: \$321 per AF if GW levels below MOs
 - Tier 2: \$595 per AF if exceed budget by <5%
 - Tier 3: 1,678 per AF if exceed budget by >5%

Almonds and Pistachios Other Perennial Vegetables Field and Grain Idle

Some Discussion Points

- Allocation system
 - Fees and penalties
 - Management areas
- Different types of lands and components to the water allocation (SWP, GW, TCA, transfers, etc.)
- Flexibility within individual landowner water budgets
- Phased ramp-down of TCA

CASE STUDY: MADERA COUNTY

ERA Economics

Environment - Resources - Aan

Multibenefit Land Repurposing Program (MLRP)

Example Components / Actions

Land repurposing

Reduced pumping (incentives/voluntary)

Irrigation and production practices

Conservation (e.g., urban)

Rotational fallowing (incentives/voluntary)

Fallow bank (incentives/voluntary)

Alternative crops

Land retirement (incentives/voluntary)

Recycled water

Water fees / financial incentives

Education / water use data

Others

Background

- What triggered implementation?
 - Demand management is part of core GSP implementation for many GSAs
 - This is one of several demand management programs
 - Grant funding

Program Overview

- What is the MLRP?
 - Department of Conservation
 - Defined by local partner groups
- When was it developed?
 - Development in 2023/2024
 - Adopted in 2024
- How is it funded?
 - DOC block grant

Multibenefit Land | MLRP Madera Repurposing Program | MLRP Madera

Madera County Multibenefit Agricultural Land Repurposing Plan (MALRP)

A Regional Block Grant Deliverable for the Department of Conservation's Multibenefit Land Repurposing Program (MLRP)

> Administrative Draft September 23, 2024

MLRP Concept

- Voluntary
 - Must save water and provide co-benefits
- Enrollment approach
 - Open enrollment
 - Scoring process
 - Rank and select project proposals

C. Multibenefit Outcomes (Co-Benefits) and Definitions

Co-Benefit	Description
Air quality improvement	Reduces dust, chemicals or other sources of particulate matter that impact the air quality within and around the project location.
Employment opportunities	Creates new jobs or supports job security.
Tribal or cultural benefit	Provides space dedicated to traditional land uses, cultural traditions, or the arts.
Soil quality enhancement	Includes land maintenance and management practices to promote soil health or prevent erosion.
Water quality enhancement	Supports improved water quality of community or domestic wells.
Renewable energy	Creates a clean energy source that helps California reduce its climate impacts.
Habitat creation	Improves regional biodiversity supports the recovery of plants and animals that are at risk of extinction.
Recreation or community space	Offers opportunities for recreational, educational or other space to enhance community well-being.
Flood risk mitigation	Provides a diversion point or dedicated area for flood flows to reduce downstream flood risks to communities and farmland.

What will the program cost?

- Grant funded
 - Incentive payments
 - Co-benefit (public benefit) payments
 - Direct cost reimbursement
- Other Considerations
 - Scalable
 - Landowner options for project

	eureara space		
	Dryland farming		
	Floodplain habitat		
	Less water-intensive crop		
	Rangeland (Managed Grazing Land)		
	Pollinator habitat		
	Recharge basin or facilities		
	Rotational strip cropping		
	Solar energy production, storage,		
	transmission		
	Wildlife habitat		
	Description		
ete	Compensation for project development,		
515	implementation, operating, and maintenance cos		
	Payment to cover returns that would have been		

Community recreational area or

Category	Description
1 Direct Project Costs	Compensation for project development,
1. Difect Project Costs	implementation, operating, and maintenance costs
2. Forgone Returns	Payment to cover returns that would have been
	realized under the existing land use, adjusted to
	reflect water use and/or any income from the
	repurposed land use
2 MI DD Dopofito	Additional bonus payment(s) for public "multi"
5. MLKP Denemits	benefits created by the project

Project Type

cultural space

Some Discussion Points

- Example of a voluntary program with co-benefits
 - Scalability and cost
 - Comparable opportunities?
- Fixed incentive payments with scoring for project selection
- Grant funding opportunity

CASE STUDY: SALINAS VALLEY BASIN

Building on Existing Programs

Example Components / Actions

Land repurposing

Reduced pumping (incentives/voluntary)

Irrigation and production practices

Conservation (e.g., urban)

Rotational fallowing (incentives/voluntary)

Fallow bank (incentives/voluntary)

Alternative crops

Land retirement (incentives/voluntary)

Recycled water

Water fees / financial incentives

Education / water use data

Others

Background

- Groundwater management issues predate SGMA
 - Seawater intrusion mitigation project
 - Land conversion
 - Land retirement
- Trends
 - Robust agricultural industry
 - Population growth in the region
- GSPs
 - Management for levels, seawater intrusion, quality, storage

Demand Management Issues

- Historical investments
- Who pays for projects and any management actions?
- Fairness across subbasin boundaries
 - Markets and contracts
- Urban and agricultural water users

Some Discussion Points

- Differences in lower and upper valley areas
- Concerns about fairness
 - Allocation of water supply
 - Allocation of costs
- Substantial investment in potential projects
 - Seawater intrusion

ECONOMIC ANALYSIS AND GSP IMPLEMENTATION

Evaluating Economic Outcomes

- Considerations for evaluating demand management program components
 - Grower and landowner costs
 - Regional economic impacts
 - County tax base and community impacts
 - Consideration of small and large farms
 - Allocation design
 - Well mitigation programs

Program Considerations

- Minimizing economic costs
 - Adjustment period
 - Program components
- Small farming operations
 - Funding mechanisms for programs
 - Access to capital
- Mitigation programs
 - Costs and benefits of expanding implementation and mitigating for any impacts
 - What is "significant and unreasonable"?

DISCUSSION: DEMAND MANAGEMENT PROGRAM CONCEPT

Demand Management Program Framework

Discussion / Next steps

- Frame potential components for a Tehama County demand management program
 - Outcome (under this project as currently defined): contribution to a technical memorandum summarizing a demand management program <u>concept</u> for Tehama County
- Other questions and discussion?

