| Creating Boundaries for Demand Management Comparing Different Methods/Approaches | | | | | |--|---|--|---|---| | Method/Approach | Benefits | Drawbacks | Assumptions/Uncertainties | Key Considerations | | True-Thiessen Auto-generated polygons based on equidistant boundaries from monitoring wells | Objective defensibility Avoids human bias Auto-updates with well changes Best Supports: Areas with dense monitoring coverage and stable conditions | Lacks hydrogeologic basis Potential divisions across similar operations May split water portfolios Challenging for: Properties spanning boundaries; areas with sparse well coverage | Assumes monitoring wells
represent surrounding area Assumes additional wells/sites in
the future to improve
monitoring network | Current starting point due to Jan '26 time constraints Lowest implementation cost State likely to accept as "objective" Need regular review cycle | | Groundwater Conditions-Based Polygons drawn around areas experiencing or predicted to experience groundwater issues | Targets actual areas of concern More defensible for restrictions Best Supports: Areas with stable groundwater unlikely to face restrictions | More subjective "problem" determination Boundaries may shift frequently Challenging for: Areas already experiencing declines (immediate targets) | Assumes local pumping causes
local problems (not regional
effects) Model accuracy questions | Could overlay on Thiessen Requires extensive modeling Need AEM data integration Political sensitivity around
"problem" designation | | Polygons based on crop
types, irrigation patterns,
and agricultural use | Aligns with actual demand Enables crop-specific strategies Best Supports: Well-documented efficient operations; uniform crop areas | Significant data gaps ("unknown" parcels) Frequent land-use changes Challenging for: Small farms with poor documentation; mixed-use operations | Future land use unpredictable Assumes uniform water use within crop types Age/maturity of orchards not captured | Regular QAQC expensive Doesn't account for irrigation efficiency differences | | Evapotranspiration-
Based Polygons based on measured water consumption through ET rates | Measures water consumption Objective defensibility Low cost to county Best Supports: Efficient groundwater irrigators with modern systems | Can't distinguish water sources Data accuracy and resolution limitations Different optimal ET by crop Challenging for: Older orchards; areas without surface water access | Assumes ET reflects GW use Optimal ET targets uncertain Weather/climate variability impacts | Land IQ expensive (\$100K+ annually) Open ET currently insufficient Must account for deficit irrigation practices Is it reasonably accurate? Possible confirmation tool | ## **Critical Context for All Approaches:** - Data Reality: - Most "monitoring wells" are actually 60-80 year old production wells with unknown screening depths - Upper aquifer monitoring (<200 ft) doesn't match pumping depths (200-800 ft) - o Multi-completion monitoring wells cost ~\$1M each to install - Regulatory Pressure: - $\circ \quad \text{State requires demonstrated specific PMAs for overdraft} \\$ - January 2026 adoption deadline limits comprehensive approach development - Neighboring basins' approaches influence capabilities - Implementation Timeline: - o Polygons have not been defined yet and can change before 2031 - 2031 before restrictions begin (allows refinement time) - o 5-year GSP update cycles enable adjustments - Current approach viewed as starting point, not endpoint